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Abstract We study the long time motion of fast particles moving through time-dependent
random force fields with correlations that decay rapidly in space, but not necessarily in time.
The time dependence of the averaged kinetic energy 〈p2(t)〉/2 and mean-squared displace-
ment 〈q2(t)〉 is shown to exhibit a large degree of universality; it depends only on whether
the force is, or is not, a gradient vector field. When it is, 〈p2(t)〉 ∼ t2/5 independently of the
details of the potential and of the space dimension. The stochastically accelerated particle
motion is then superballistic in one dimension, with 〈q2(t)〉 ∼ t12/5, and ballistic in higher
dimensions, with 〈q2(t)〉 ∼ t2. These predictions are supported by numerical results in one
and two dimensions. For force fields not obtained from a potential field, the power laws are
different: 〈p2(t)〉 ∼ t2/3 and 〈q2(t)〉 ∼ t8/3 in all dimensions d ≥ 1.
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1 Introduction

We study in this paper the motion

q̈(t) = F (q(t), t) (1.1)

of fast particles in random force fields with correlations that are short-range in space, but not
necessarily in time. We consider models of two different general classes. In the first, upon
which we focus most of our attention, the force is assumed to be of the form

F(q, t) =
∑

N

fN

(
q − qN

�
,

t

σ

)
, (1.2)

where the fN are smooth functions of compact support in a ball of radius 1/2 centered
at 0, with additional characteristics detailed in Sect. 2; �,σ > 0 are a length and a time
scale. The fN model a random or periodic array of identical, randomly-oriented scatterers,
centered at points qN , that evolve periodically or quasi-periodically in time. We assume
infN �=M ‖qN − qM‖ ≥ � so that the local forces fN(

q−qN

�
, t

σ
) do not overlap. As a result, the

particle interacts with at most one scatterer at a time, and otherwise travels freely between
collisions, through a random potential. The model therefore describes an inelastic and non-
dissipative soft Lorentz gas, i.e., a distribution of “soft” scatterers centered at the points qN ,
off which the particle bounces inelastically. We introduce randomness in the initial data, and
assume the system to have finite horizon, so any trajectory of a free particle intersects the
support of F at some future time t .

To explain our terminology and for comparison’s sake, we recall that in the standard
Lorentz gas, scattering is elastic, and scatterers are identical hard unchanging obstacles cen-
tered at fixed points qN , with a spatial distribution chosen either randomly, periodically, or
quasi-periodically. Unlike in the current model, the particle’s energy in the Lorentz gas is
conserved and the particle’s mean squared displacement has been proven to be diffusive as a
result of the strong chaotic properties of the local dynamics [5]. A hard but inelastic Lorentz
gas is studied in [14, 15], where the obstacles’ radii oscillate in time, periodically or ran-
domly. The particle’s kinetic energy is argued to grow in time, with an exponent close to one
in both cases. The behaviour of the mean squared displacement of the particle is however
not analyzed in these works. Finally, a dissipative model, related both to the Lorentz gas
and to the models considered here, was studied in [12, 20]; there the scattering mechanism
was provided by a one-dimensional periodic array of oscillators representing environmental
degrees of freedom of the medium in thermal equilibrium. The full system consisting of the
particle in interaction with the oscillator bath was treated with a Hamiltonian dynamics, with
conservation of the total energy. The Hamiltonian interaction of the particle with the oscil-
lator bath then provides, in addition to a random force, an effective friction force that allows
the particle to dissipate any excess energy, and to thus equilibrate with its environment. As
a result, it is shown the particle’s averaged kinetic energy is asymptotically constant and the
particle’s motion is diffusive with a temperature dependent diffusion constant.

The force (1.2) considered in the present paper can be thought of as being obtained
from those of [12, 20] by switching off the friction component of the force provided by the
particle’s back reaction with the medium. The stochastic acceleration of the particle induced
by the random force field leads, then, to an unbounded acceleration of the particle. In this
paper we compute the power laws associated, e.g., with the growth in time of the particle’s
average kinetic energy 〈p2(t)〉/2 and mean-squared displacement 〈q2(t)〉, as well as the
time scales on which these phenomena occur.
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In the other class of models that we consider, the force F(q, t) is modeled as a space and
time homogeneous random field satisfying

〈F (q, t)〉 = 0,
〈
F (q, t)F

(
q ′, t ′
)〉= �2

σ 4
C

(
q − q ′

�
,
t − t ′

σ

)
, (1.3)

where C is a matrix function of rapid decay in the spatial variable, but need not decay in
the time variable. For these models, as with (1.2), we are interested in characterizing the
asymptotic growth of 〈p2(t)〉 and 〈q2(t)〉.

There has been a fair amount of work reported in the physics and mathematical physics
literature on problems of this type, partially motivated by questions in plasma physics, as-
tronomy, and solid state physics (see for example [4, 19, 21, 22]). Previous mathemati-
cally rigorous work has mostly dealt with deriving, under suitable scalings, Fokker-Planck
equations for the particle density (as in [8, 16]). Unfortunately, analyses of this type do
not directly give information about the asymptotic behavior of the particles’ kinetic energy
or mean squared displacement. The theoretical physics literature is mostly concerned with
Gaussian random potentials and contradictory claims have been made regarding the power
law growth of 〈p2(t)〉 and 〈q2(t)〉. For potential fields that are delta correlated in time,
but not in space, it is generally agreed (see for example [10]) that in the weak coupling
limit 〈p2(t)〉 ∼ t and 〈q2(t)〉 ∼ t3, but there is some controversy on what happens when the
Gaussian potential field has temporal correlations of nonzero and finite duration. For this
case it is argued in [7, 13, 18] that in d = 1, 〈p2(t)〉 ∼ t2/5 and that 〈q2(t)〉 ∼ t12/5 (com-
patible with numerical and theoretical results presented here). In [9], on the other hand, it
is claimed that for d = 1, 〈q2(t)〉 ∼ t3, as in the case when the random potentials are delta
correlated in time. For d > 1 it is found in [7] that 〈p2(t)〉 ∼ t1/2, and that 〈q2(t)〉 ∼ t9/4.
In [18], the conclusions of [7] for d > 1 are contested and it is argued that for Gaussian
random potentials with fast decaying spatial and temporal correlations 〈p2(t)〉 ∼ t2/5 in all
dimensions, and 〈q2(t)〉 ∼ t2 for d > 1.

Although there is some numerical work [13] that supports the predictions for d = 1 of
[7, 13, 18], to the best of our knowledge no numerical simulations have been performed in
higher dimensions. To help resolve the existing controversy on this subject we present in this
paper numerical results in one and two dimensions on a particularly simple (non-Gaussian)
model whose random force can be expressed as in (1.2), and which allows for an efficient
numerical integration of the equations of motion out to very long times. Full details of the
numerical calculations are presented in Sect. 7, but our essential results for the case in which
the force F is derived from a potential field are presented in Figs. 1 and 2, where we plot
the quantities 〈v2〉 = 〈(pσ/�)2〉 and 〈y2〉 = 〈(q/�)2〉, as functions both of the dimensionless
time τ = t/σ and of the collision number n, which labels the number of scattering centers
visited by the particle.

Our numerical results indicate that in both one and two dimensions
〈
v2(τ )
〉∼ τ 2/5,

〈
v2

n

〉∼ n1/3, (1.4)

which is in agreement with [7, 13, 18]. In one dimension the particle’s mean-squared dis-
placement is superballistic, with

〈
y2 (τ )
〉∼ τ 12/5,

〈
y2

n

〉∼ n2. (1.5)

In two dimensions, however, 〈y2(τ )〉 becomes ballistic, i.e.,
〈
y2 (τ )
〉∼ τ 2,

〈
y2

n

〉∼ n5/3. (1.6)
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Fig. 1 Numerically determined values of 〈v2(τ )〉 and 〈v2
n〉 in one dimension (top) and for a two-dimensional

hexagonal lattice (bottom), for the model described in Sect. 7. In each plot, the different symbols correspond
to different initial conditions, as indicated, the straight lines to the power laws in (1.4)

Fig. 2 Numerically determined values of 〈y2(τ )〉 and 〈y2
n〉, in one dimension (top), and for a

two-dimensional hexagonal lattice (bottom), for the model described in Sect. 7. In each plot, different symbols
correspond to different initial conditions, as indicated, the straight lines to the power laws in (1.5) and (1.6)
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This is different from what was predicted in [7] for Gaussian potentials, but in agreement
with predictions made for this case in [18].

To understand our numerical results in one and two dimensions, and to more firmly es-
tablish what happens for the models of the type (1.2) and (1.3) in higher dimensions, we
present in the bulk of this paper a unified mathematical analysis that captures the essen-
tial physics of the problem. It provides in particular a means for calculating the power law
growth of the mean kinetic energy and the mean-squared displacement associated with an
ensemble of particles moving in time-dependent random force fields of the types described
above.

The analysis is based on consideration of the typical trajectory of a particle moving in
a fluctuating force field described by (1.2) or (1.3), which can be viewed as a sequence of
isolated scattering events. We argue, in fact, that the motion is well approximated by a cou-
pled discrete-time random walk for the particle’s momentum and position. Each time step
corresponds to one collision of the particle with a single scatterer, or to one traversal by the
particle of a distance of the order of the correlation length of the potential. Momentum incre-
ments are treated as independent random events whose magnitude depends upon the particle
speed. Theoretical analysis of the resulting random walk reveals that the high velocity be-
havior of the momentum change of the particle during one such scattering event completely
determines the asymptotic properties of the motion. As we show, this high energy behavior
is insensitive to the details of the force field, notably to its statistical properties or to the pre-
cise geometry of the scattering centers; the asymptotic behavior of the motion is therefore
quite universal, and in particular not a result that arises only with Gaussian potential fields.

Indeed, for general force fields obtainable as the gradient of a potential field, we find
(Theorem 4.1) that the energy change incurred by a particle of velocity v satisfies �E ∼
‖v‖−1. This fact, combined with our analysis of the resulting random walk in momentum
and position space leads to an increase of 〈p2(t)〉 that is in all dimensions of the form
observed in Fig. 1, and as described by (1.4). In one dimension, 〈q2(t)〉 is predicted by our
analysis to grow in time as in (1.5), and as observed in the top left panel of Fig. 2. In all
higher dimensions it is predicted to grow as observed in the bottom left panel in Fig. 2,
and as described by (1.6). This slower growth of 〈q2(t)〉 in higher dimensions arises from
the fact that the particle can now turn while traveling, as its velocity vector performs an
orientational random walk resulting from small random deflections.

Our analysis can also be applied to the case where F(q, t) does not derive from a po-
tential field, a situation which has attracted some attention in the mathematics literature. We
find for a non-gradient force field that the energy change in a single scattering is consid-
erably larger than in the gradient case: �E ∼ 1 (Theorem 5.1). Consequently, we predict
a larger rate of acceleration 〈p2(t)〉 ∼ t2/3 (see (5.6)), that confirms rigorous results that
have been obtained for d ≥ 4 in [6, 11] under suitable technical conditions on the forces
fN in (1.2). Our analysis then leads to the prediction that in all dimensions particle motion
in the presence of a non-gradient random force field is superballistic with 〈q2(t)〉 ∼ t8/3

(see (5.7)). The fundamental reason for the difference with the gradient field case is that
the particle turns more slowly while traveling, because it accelerates more quickly, and so
is less easily deflected. The difference between the two situations can be traced to the fact
that time-dependent gradient force fields produce smaller changes in the particle’s energy
than non-gradient force fields do. This is a remnant of the energy conservation that is a
characteristic feature of time-independent gradient fields.

The problem addressed here is related to that of the energy growth of a confined particle
in a potential with (quasi-)periodic time dependence, as occurs in pulsed or kicked rotors and
in so-called Fermi accelerators. It will be shown in a forthcoming paper how the techniques
developed here can be applied to those problems as well [1].
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The rest of the paper is organized as follows. In Sect. 2 we introduce a random walk
description of the motion of a particle moving in a field of scatterers. General features of the
walk that pertain to both gradient and non-gradient force fields are derived in Sect. 3. Sec-
tion 4 is devoted to a derivation of the above power laws for the case of a gradient force field,
and Sect. 5 analyzes the non-gradient case. In Sect. 6, we adapt our analysis of Sects. 3–5 to
random force fields as described by (1.3), obtaining results for the gradient and nongradient
case identical to those found, respectively, in Sects. 4 and 5. Details of our numerical cal-
culations, the results of which are presented in figures distributed throughout the paper, are
given in Sect. 7. Proofs of mathematical results used for the analysis in Sects. 3–6 comprise
the Appendix.

2 Particle in a Field of Scatters: A Random Walk Description

We first describe precise conditions on the functions fN in (1.2) under which we work. We
systematically use rescaled variables (� > 0, σ > 0)

τ = t

σ
∈ R, y (τ ) = q (t)

�
∈ R

d , v (τ ) = ẏ (τ ) = σ

�
p (t) , xN = qN

�

and suppose fN to be of the form

fN (y, τ ) = �

σ 2
cNMNg

(
M−1

N y,ωτ + φ0
N

)
. (2.1)

The locations xN,N ∈ Z
d of the scattering centers can be chosen either randomly (with

uniform density) or lying on a regular lattice. The coupling constants cN are independent
random variables taking values in [−1,1] and distributed according to a common proba-
bility measure ν not concentrated on 0. The MN are rotations belonging to SO(d,R) and
are also i.i.d., according to the left-invariant Haar measure on SO(d,R). Thus, the scat-
terers are identical objects randomly oriented in space, all described by the same func-
tion g : R

d × T
m → R

d which is smooth and supported in the ball of radius 1/2 in its
first variable; T

m = R
m/Z

m is the m-torus and ω ∈ R
m,‖ω‖ = 1. When ω has compo-

nents that are independent over the rationals, the force is quasi-periodic in time, otherwise
it is periodic. The parameters φ0

N ∈ T
m are i.i.d. random initial phases, uniformly distrib-

uted on the torus. We write dμ(M,φ, c) for the above described probability measure on
SO(d,R) × T

m × [−1,1]. The force may or may not derive from a potential. The above
class of models is sufficiently rich to allow for the description of pulsing, vibrating, and
rotating scattering centers; for an explicit example, see Sect. 7.

In the rescaled variables, the equations of motion (1.1)–(1.2) become

ÿ (τ ) = G(y(τ), τ ) , G(y, τ ) =
∑

N

cNMNg
(
M−1

N (y − xN),ωτ + φ0
N

)
. (2.2)

One should think of g(y,ωτ + φ) as the force produced by a soft, time-dependent scatterer
centered at the origin; G then describes a field of identical scatterers, randomly oriented, and
centered at the points xN . We assume the system has a finite horizon, so that the distance
over which a particle can freely travel is less than some fixed distance L > 0, uniformly in
time and space and independently of the direction in which it moves. Thus, with probability
one, for all (y, v, τ ) ∈ R

2d × R such that G(y, τ) = 0,

sup
{
τ ′ > 0 | ∀0 ≤ τ ′′ ≤ τ ′,G

(
y + vτ ′′, τ + τ ′′)= 0

}≤ L

‖v‖ .
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Fig. 3 A particle at time τn
impinging with velocity vn and
impact parameter bn on the nth
scatterer, centered at the point yn

We consider a particle which at time τ0 = 0 is close to a scatterer at x0 = 0 and moving
toward it with initial velocity v0 along an initial direction that, if followed without deflection,
would find the particle at its closest approach to the force center located at a point defined
by the impact parameter b0 ∈ R

d (see Fig. 3). After inelastically scattering from the center
at x0 the particle moves freely with a new velocity v1 until it encounters a second scatterer,
and in this way it undergoes a random succession of scattering events. The nth scattering
event begins, by definition, at time τn when the particle arrives with incoming velocity vn at
the point (see Fig. 3)

y−
n = yn − 1

2
en + bn, bn · en = 0, ‖bn‖ ≤ 1

2

near the scattering center at yn = xNn , where en = vn/‖vn‖, and the impact parameter bn is
a vector perpendicular to the incoming velocity vector. The nth scatterer itself is character-
ized by its orientation Mn := MNn , its phase φn := ωτn + φ0

Nn
at the time that the particle

encounters it, and the coupling strength cn := cNn .
The change in velocity experienced by a sufficiently fast particle at the nth scattering

center can be written (Proposition A.2)

vn+1 = vn + R (vn, bn,Mn,φn, cn) (2.3)

where, for all v ∈ R
d , b ∈ R

d with v · b = 0, and (M,φ, c) ∈ SO(d,R) × T
m × R,

R (v, b,M,φ, c) = c

∫ +∞

0
dτ ′Mg

(
M−1y
(
τ ′),ωτ ′ + φ

)
(2.4)

in which y(τ) is the unique solution of

ÿ (τ ) = cMg
(
M−1y (τ) ,ωτ + φ

)
, y (0) = b − 1

2

v

‖v‖ , ẏ (0) = v.

After leaving the influence of the nth scatterer, the particle then travels a distance ηn with
velocity vn+1 to scatterer n + 1, which it encounters after a time �τn = ηn/‖vn+1‖.

Based upon this description of the dynamics, and ignoring the role of recollisions, we
now argue that the motion of an ensemble of particles moving in a force field described
by (1.2) is well approximated by a coupled discrete-time random walk in momentum and
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position space. Each step of the walk is associated with one scattering event, where the
variables Mn,φn, cn that characterize the scatterer, and the variables ηn, bn that characterize
the approach of the particle onto the scatterer, are drawn from distributions that characterize
them in the actual system of interest. Thus, starting from a given initial condition (y0, v0),
we iteratively determine the velocity, the location, and the time of the particle immediately
before the nth scattering event through the relations:

vn+1 = vn + R (vn, κn)

τn+1 = τn + η∗
‖vn+1‖

yn+1 = yn + η∗en+1

⎫
⎬

⎭ (2.5)

where κn = (bn,Mn,φn, cn). The parameters (Mn,φn, cn) are independently chosen from the
distributions already described (the distribution for φn being the same as for φ0

n). Without
the loss of any essential physics, we have in (2.5) replaced the random variable ηn at each
time step with the average distance η∗ = 〈ηn〉 < L between scattering events. The bn are
independently chosen at each step uniformly from the d − 1 dimensional ball of radius 1/2
perpendicular to vn. To summarize, this random walk describes a particle that moves freely
over a distance η∗, then meets, with random impact parameter, a randomly oriented scatterer
at a random moment of its (quasi-)periodic evolution. After scattering, the process repeats
itself. Our basic assumption, therefore, is that this gives a good description of a typical
trajectory in the real system.

In what follows we write 〈·〉 for averages over all realizations of the random process
κn. In Sects. 3–6 we study the asymptotic behavior of this random walk, under conditions
expressed in the following hypothesis:

Hypothesis 1 g ∈ C3(Rd × T
m) is compactly supported in the ball of radius 1/2 centered

at the origin in the y variable. The function g and its partial derivatives up to order three are
all bounded, and we write

0 < gmax := ‖g‖∞ < +∞.

If g(y,φ) = −∇yW(y,φ), we suppose W ∈ C4(Rd × T
m) also is supported in the ball of

radius 1/2 centered at the origin in the y-variable. Moreover, (ω · ∇φ)W �= 0 and, if d = 1,
we require that, for some φ ∈ T

m,
∫

R

dy
(
ω · ∇φ

)
W (y,φ) �= 0. (2.6)

The meaning of (2.6) is explained in Remark 4.2 below.

3 Analysis of the Random Walk: General Considerations

We now turn to the analysis of the large n behavior of the first equation of (2.5)

vn+1 = vn + R (vn, κn) (3.1)

which is independent of the others. We assume that the particles are fast, meaning ‖v0‖2 �
cgmax (Lemma A.1). For that purpose we need to understand the high momentum behavior
of the momentum transfer R(vn, κn), as well as of the energy transfer

�E (vn, κn) = 1

2

(
(vn + R (vn, κn))

2 − v2
n

)
. (3.2)
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First order perturbation theory allows one to write (see Proposition A.2 for details)

R (vn, κn) = cn

‖vn‖
∫ +∞

−∞
dλ Mng

(
M−1

n

(
bn +
(

λ − 1

2

)
en

)
,

ωλ

‖vn‖ + φn

)

+ O
(‖vn‖−3

)
.

More generally, if g is sufficiently smooth, one can write, for K ∈ N, and (v, κ) ∈ R
2d ×

SO(d,R) × T
m × R, b · v = 0,

R (v, κ) =
K∑

k=1

α(k) (e, κ)

‖v‖k
+ O
(‖v‖−K−1

)
, e = v

‖v‖ . (3.3)

Note that

α(1) (e, κ) = c

∫ +∞

−∞
dλ Mg

(
M−1

(
b +
(

λ − 1

2

)
e

)
, φ

)
(3.4)

and

α(2) (e, κ) = c

∫ +∞

−∞
dλ λ∂τMg

(
M−1

(
b +
(

λ − 1

2

)
e

)
, φ

)
, (3.5)

in which we have introduced the suggestive notation

∂τ := ω · ∇φ. (3.6)

Hence

�E (v, κ) =
L∑

�=0

β(�) (e, κ)

‖v‖�
+ O
(‖v‖−L−1

)
, (3.7)

where

β(0) = e · α(1)

β(1) = e · α(2)

β(2) = ( 12 α(1) · α(1) + e · α(3)
)

β(3) = (α(1) · α(2) + e · α(4)
)

β(4) = ( 12 α(2) · α(2) + α(1) · α(3) + e · α(5)
)
.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(3.8)

It is easy to see that expansion (3.3) has rather different features when g is a gradient vec-
tor field than when it is not. Indeed, when g = −∇W , the first order term in the momentum
transfer (3.3) is perpendicular to the incoming momentum v, so that

β(0) (e, κ) = e · α(1) (e, κ) = 0. (3.9)

As a result �E ∼ ‖v‖−1 in that case. Moreover, one then has

β(1) (e, κ) = c

∫ +∞

−∞
dλ ∂τW

(
M−1 (b + λe) ,φ

)
. (3.10)

On the other hand, when g is not a gradient vector field, β(0) does not vanish and, as a
consequence, �E ∼ 1. This is the source of the different asymptotics for 〈v2

n〉 and 〈y2
n〉 in

those two cases, as we will see below.
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For later purposes, starting from (3.1)–(3.3), a simple computation yields

en+1 =
(

1 − �En

‖vn‖2

)[
en + Rn

‖vn‖
]

+ O

(
(�En)

2

‖vn‖4

)
= en + δn, (3.11)

where Rn = R(vn, κn), and �En = �E(vn, κn). Hence, from (3.8),

δn = (α(1)
n − (α(1)

n · en)en

) 1

‖vn‖2
+ (α(2)

n − (α(2)
n · en)en

) 1

‖vn‖3

+ (α(3)
n − (α(3)

n · en)en

) 1

‖vn‖4
− 1

2

(
α(1)

n · α(1)
n

) en

‖vn‖4

− (α(1)
n · en

) α(1)
n

‖vn‖4
+ O(‖vn‖−5)

= δ(4)
n + O(‖vn‖−5).

Here α(k)
n = α(k)(en, κn). We can write δn = δ⊥

n + μnen, δ⊥
n · en = 0, with (since ‖en+1‖ =

1 = ‖en‖)

μn = −1 +
√

1 − δ⊥
n · δ⊥

n ≤ 0

= −1

2

(
α(1)

n · α(1)
n

) 1

‖vn‖4
− (α(1)

n · en

)2 1

‖vn‖4
+ O(‖vn‖−5).

For a function f depending on v and κ = (b,M,φ, c), b · v = 0,‖b‖ ≤ 1/2 we shall
denote the average over the parameters associated with a single scattering event as

f (v) =
∫

db

Cd

∫
dμ(M,φ, c) f (v, b,M,φ, c) , (3.12)

where Cd is the volume of the ball of radius 1/2 in R
d−1.

4 Analysis of the Random Walk: Gradient Fields

In this section we consider the more interesting case where g = −∇yW . The following
theorem, the proof of which appears in the Appendix, will be essential to our results.

Theorem 4.1 Suppose Hypothesis 1 holds and that g = −∇yW .
(i) For all unit vectors e ∈ R

d ,

α(1) (e) = 0 = α(2) (e). (4.1)

Moreover, for all v ∈ R
d

�E (v) = B

‖v‖4
+ O
(‖v‖−5

)
, (�E (v))2 = D2

‖v‖2
+ O
(‖v‖−3

)
, (4.2)

where

B = d − 3

2
D2 (4.3)
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with

D2 = c2

Cd

∫

Tm

dφ

∫

R2d

dy0dy ′
0 ‖ y0 − y ′

0 ‖1−d ∂τW (y0, φ) ∂τW
(
y ′

0, φ
)
> 0. (4.4)

In particular, for all unit vectors e ∈ R
d and for � = 1,2,3,

β(�) (e) = 0, B = β(4) (e) and D2 = (β(1) (e)
)2

> 0. (4.5)

(ii) Let vn be the random process defined by (3.1) and en = vn/‖vn‖. Let, for � ∈ N,
β(�)

n = β(�)(en, κn). Then one has, for all n �= n′ ∈ N, for all 0 ≤ � ≤ �′ ≤ 3,

〈β(4)
n 〉 − B = 0 = 〈β(�)

n 〉
〈β(�)

n β
(�′)
n′ 〉 = 0 = 〈β(�)

n (β
(4)

n′ − B)〉 = 〈(β(4)
n − B)(β

(4)

n′ − B)〉.

}
(4.6)

Moreover, 〈(β(4)
n )2〉 and 〈β(�)

n β(4)
n 〉 are independent of n.

Remark 4.2 (i) Note that part (i) of the Theorem does not involve the random walk (3.1). It
is a statement about the functions α(�)(e, κ),β(�)(e, κ), viewed as random variables in κ .

(ii) The strict positivity of D2 is equivalent to the requirement that β(1) does not vanish
identically. This follows from Hypothesis 1, and notably from the nonvanishing of the time
derivative of the potential. This is as expected, since in a time-independent potential, energy
is conserved to all orders, so certainly β(1) = 0. In one dimension, the extra assumption
(2.6) is needed to ensure β(1) �= 0: indeed, when d = 1, β(1) = 0 as soon as the potential has
a vanishing spatial average. In that case, some lower order term β(�) will not vanish and,
as will be clear from the discussion which follows, this would alter the power laws of the
stochastic acceleration. Such situations, which are easily treated using the methods of this
paper, will not be considered further.

(iii) From (4.2), one sees the typical energy change in one collision is of order D/‖v‖,
for large ‖v‖, whereas its average value B/‖v‖4 is much smaller. Also it is a small energy
loss for d ≤ 2 and a gain for d ≥ 4. We will see below that even in low dimensions and
asymptotically in time the energy grows on average, despite this loss term.

We first establish the asymptotic behavior of 〈‖vn‖2〉, where vn is the stochastic process
defined by (3.1). We start from the expansion (3.7) which yields, respectively

‖vn+1‖2

‖vn‖2
= 1 +

4∑

i=1

2β(i)
n

‖vn‖i+2
+ O
(‖vn‖−7

)

‖vn+1‖
‖vn‖ = 1 +

3∑

i=1

β(i)
n

‖vn‖i+2
+ O
(‖vn‖−6

)

‖vn+1‖ − ‖vn‖ =
3∑

i=1

β(i)
n

‖vn‖i+1
+ β(4)

n − 1
2 (β(1)

n )2

‖vn‖5
+ O
(‖vn‖−6

)

and consequently

�‖vn‖3 = ‖vn‖2�‖vn‖
[

1 + ‖vn+1‖
‖vn‖ + ‖vn+1‖2

‖vn‖2

]



Classical Motion in Force Fields with Short Range Correlations 791

=
3∑

i=1

3β(i)
n

‖vn‖i−1
+ 3
(
β(4)

n + 1
2 (β(1)

n )2
)

‖vn‖3
+ O
(‖vn‖−4

)

= 3β(1)
n + 3
(
β(4)

n + 1
2 (β(1)

n )2
)

‖vn‖3
+ O0

(‖vn‖−1
)+ O
(‖vn‖−4

)
. (4.7)

Here the notation O0(‖vn‖−1) means the term is O(‖vn‖−1) and of zero average. Introducing

ξn = ‖vn‖3

3D
, εn = β(1)

n

D
and γ = 1

3

(
B

D2
+ 1

2

)
= 1

6
(d − 2) ≥ −1

6
, (4.8)

we drop the error term in (4.7) to obtain the one-dimensional random walk

�ξn = εn + γ

ξn

with 〈εn〉 = 0,
〈
ε2
n

〉= 1 (4.9)

in the variable ξn. Here the first term on the right hand side is the dominant term of zero
average in (4.7), whereas the second term is a systematic drift term, and is its dominant term
of non-zero average (when γ �= 0).

From this simple random walk we can easily deduce the short time behavior of the dy-
namics. Suppose ξ0 � |γ |. Then,

ξn = ξ0 + n
γ

ξ0
+

n−1∑

k=0

εk,

where this approximation remains valid as long as |ξn − ξ0| � ξ0. A short calculation shows
this is guaranteed provided1

n � N∗ (ξ0) ∼ ξ 2
0 ∼ ‖v0‖6. (4.10)

This last relation gives an estimate of the number of collisions needed before the asymptotic
long time behavior, as derived below, sets in. This dependence on the initial speed can be
seen in the numerical results for the model described in Sect. 7, as shown in Fig. 4. We now
turn to the asymptotic behavior of ξn, n � N∗(ξ0). We will show that, for d ≥ 2, and for
k > −3,

〈‖vn‖k
〉∼ n

k
6 . (4.11)

Note that this is indeed the behavior observed numerically for the full dynamics of the
numerical models described in Sect. 7, as illustrated in Fig. 1 for k = 2, and which we
present in Fig. 5 for k = −1 and −2.

From a theoretical point of view, the result (4.11) is obvious for d = 2, since then γ = 0
and (4.9) then just describes a simple random walk on the half line. More generally, looking
at (4.9), because γ ≥ 0 for d ≥ 2, one certainly expects 〈ξn〉 → +∞, as a result of the
combined drift-diffusion implied by (4.9). In d = 1, γ < 0 and the second term then acts as
a friction term. We will nevertheless show that for all γ > −1/2 the friction is too small to
alter the asymptotic behavior of 〈ξn〉. To this end we note that

�ξ 2
n = (2ξn + �ξn)(�ξn).

1From this point onward we use the notation f (x) ∼ g(x) to mean that there exist 0 < c ≤ C < +∞ so that
cf (x) ≤ g(x) ≤ Cf (x).
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Fig. 4 The quantities N∗(‖v0‖)
(on the left vertical axis), and
τ∗(‖v0‖) (on the right vertical
axis) as a function of ‖v0‖ for a
particle moving in a hexagonal
lattice (d = 2) as described in
Sect. 7

Fig. 5 Numerical results showing the asymptotic behavior of 〈‖vn‖k〉, for the model described in Sect. 7, in
one and two dimensions, with initial conditions and k values as indicated

Again keeping only the dominant terms yields

�ξ 2
n = 2ξnεn + 2γ + 1. (4.12)

For γ > −1/2, we will now show that after rescaling the process ξ 2
n by n, it has a well-

defined limit, which is a squared Bessel process of dimension δ = 2γ +1. This will establish
(4.11) for those values of γ and for all k > −3. To see this, define, for s ≥ 0, n ∈ N, and
0 ≤ σ ≤ s,

Y (n)
σ = s

n
ξ 2
k , if σk = k

s

n
≤ σ < (k + 1)

s

n
= σk+1. (4.13)
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Fig. 6 Behavior of the collision time 〈τn〉 for the model of Sect. 7, both in one and two dimensions, with
initial speeds as indicated

Multiplying (4.12) with s/n one finds that

Y (n)
s = Y

(n)

0 + 2
n−1∑

k=0

√
Y

(n)
σk �B(n)

σk
+ (2γ + 1) s,

where

B(n)
σk

=
√

s

n

k−1∑

�=0

ε�.

Taking the limit n → +∞ and writing Ys = limn→+∞ Y (n)
s , one finds

Ys = Y0 + 2
∫ s

0

√
YsdBs + (2γ + 1)s,

where Bs is a one-dimensional Brownian motion since the εn are i.i.d. In other words, the
limiting process Ys satisfies the stochastic differential equation

dYs = 2
√

YsdBs + (2γ + 1)ds, (4.14)

of the squared Bessel process of dimension δ = 2γ + 1 (see [17], Chap. 11), and is therefore
a squared Bessel process.

Thus, since ξ 2
n /n converges, we can approximate its distribution by that of Y1 and con-

clude that, for all � > −1, 〈ξ�
n 〉 ∼ n

�
2 , which is (4.11). A more rigorous version of these

arguments will be provided in [2]. Equation (4.11) in particular yields, via (2.5), (see Fig. 6)

〈τn〉 ∼ n5/6 (4.15)

and, finally

〈
v2 (τ )
〉∼ τ 2/5, τ � τ∗ (‖v0‖) := N∗ (ξ0)

‖v0‖ ∼ ‖v0‖5. (4.16)
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We note that the asymptotic behavior does not depend on the initial speed ‖v0‖; the time
scale τ∗(‖v0‖) = τN∗(‖v0‖) on which it sets in, on the other hand, is predicted by this analysis
to grow quickly, as ‖v0‖5, a result that is verified in the 2d numerical results presented in
Fig. 4, which shows the number of collisions N∗ and the mean time τ∗ before the asymptotic
regime is observed, as a function of ‖v0‖.

For d = 1, the same power law was found for (Gaussian) random fields in [7, 13], and
[3], using very different methods. For d > 1, the only studies we are aware of are [7] and
[18], who deal with Gaussian random fields and who respectively find 〈v2(τ )〉 ∼ τ 1/2, which
disagrees with (4.16) and 〈v2(τ )〉 ∼ τ 2/5, which agrees with it. As mentioned in the Intro-
duction, we have corroborated our predictions (4.11) and (4.16), including the onset of the
asymptotic regime at τ∗(‖v0‖), with numerical calculations in 1d and 2d , the results of
which are presented in Fig. 1 and described more fully in Sect. 7.

Before turning back to an analysis of the full random walk (2.5) in order to determine the
asymptotic behavior of the mean squared displacement 〈y2(τ )〉, we now first briefly discuss
the validity of the assumption we implicitly made in passing from (4.7) to (4.9), namely
that the lower order terms of (4.7) won’t alter the behavior of 〈v2(τ )〉 that we obtained
by ignoring them. To get an estimate of the error made neglecting these terms, we will
evaluate them along a typical trajectory of the random walk (3.1), along which we showed
‖vn‖ ∼ n1/6, and will thereby demonstrate that the contribution of each of the neglected
terms to ξn is smaller than n1/2, the contribution of the two dominant terms retained above.
Note first that for i = 2,3

〈
n∑

k=1

β
(i)
k

k(i−1)/6

〉
= 0,

〈(
n∑

k=1

β
(i)
k

k(i−1)/6

)2〉
∼ n1−2(i−1)/6,

because 〈β(i)
k 〉 = 0, and 〈β(i)

k β
(i)

k′ 〉 = 0 for k �= k′, by Theorem 4.1(ii). Hence, since for i =
2,3, n1−2(i−1)/6 � n ∼ 〈ξ 2

n 〉 ∼ 〈‖vn‖6〉, we conclude that, with the above condition on β
(i)
k ,

these neglected terms do indeed contribute a lower order correction to (4.11). The neglected
term of order ‖vn‖−3 is also of zero average, and therefore treated in the same way. Unlike
the first three terms, the error in (4.7) that is of order ‖vn‖−4 = O(n−2/3), need not be of zero
average; however after summation over n it yields a contribution of order n1/3 � n1/2 ∼ ξn,
and can therefore also be neglected. Theorem 4.1 therefore implies that all neglected terms
in (4.7) provide lower order contributions to the asymptotics of ‖vn‖. Note the crucial role
of the retained term in (4.9) involving γ , which contributes a term of exactly the same order
as the dominant diffusive term εn = β(1)

n /D.
We now derive the asymptotic behavior of ‖yn‖ and ‖y(τ)‖ (see (4.20) and (4.21) below).

We first consider the case with d > 1, which clearly depends on how much the particle’s path
deviates from a straight line, i.e., on how much and how quickly it turns. In particular, we
need to analyze the third equation in (2.5). For that purpose, we will first study the evolution
of the unit vectors en, which execute a random walk on the unit (d − 1)-sphere. Note that,
for all n, as a result of Theorem 4.1(i) and the observation that en is independent of κn, the
step δn of the walk in en, defined in (3.11), has a mean that satisfies 〈δn〉 = O(‖vn‖−4). On
the other hand, the magnitude of the step is

‖δn‖ = ‖α(1)
n ‖

‖vn‖2
+ O(‖vn‖−3) = ‖δ⊥

n ‖.

Given that the particle has high speed ‖vn‖ at the nth collision, we now wish to compute how
many collisions m it takes for the particle’s direction to change by a macroscopic amount.
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For that purpose, we compute the conditional expectation

〈‖en+m − en‖2〉 =
m−1∑

k=0

m−1∑

k′=0

〈δn+k · δn+k′ 〉.

We will suppose m satisfies m � N∗(ξn) ∼ ‖vn‖6 ∼ n, so that (4.10) implies ‖vn+m‖ ∼
‖vn‖; we will therefore approximate ‖vn+k‖ by ‖vn‖. It then follows from Theorem 4.1(i)
that, for all k,

〈δn+k · δn+k〉 = 〈‖α(1)
n+k‖2〉

‖vn‖4
+ O
(‖vn‖−5

)
.

For the off-diagonal terms, we note that for k > k′,

〈δn+k · δn+k′ 〉 = 〈δ⊥
n+k · δ⊥

n+k′
〉+ 〈μn+ken+k · δ⊥

n+k′
〉

+ 〈δ⊥
n+k · μn+k′en+k′

〉+ O
(‖vn‖−8

)
.

In addition, the rotational invariance of the system implies that for a given en+k , the vector
δ⊥
n+k vanishes (see (3.12) for the definition of the barred average). Hence, if k > k′

〈
δ⊥
n+k · δ⊥

n+k′
〉= 0 = 〈δ⊥

n+k · μn+k′en+k′
〉
.

On the other hand, writing that en+k = en+k′+1 + �k , rotational invariance also implies that
the conditional expectation of �k given en+k′+1 is a vector νken+k′+1 of length |νk| ≤ 2.
Hence,

〈
δ⊥
n+k′ · μn+ken+k

〉= 〈δ⊥
n+k′ · μn+ken+k′+1

〉+ 〈δ⊥
n+k′ · μn+kνken+k′+1

〉
,

and

∣∣〈δ⊥
n+k′ · μn+ken+k

〉∣∣ ≤ 3
〈|δ⊥

n+k′ · en+k′+1||μn+k|
〉

≤ 3
〈∣∣δ⊥

n+k′ · [en+k′ + δn+k′
]∣∣ |μn+k|

〉

≤ 3

‖vn‖4
‖δ⊥

n+k′ ‖2 = O
(‖vn‖−8

)
.

Consequently,

〈‖en+m − en‖2
〉= m

〈‖α(1)

0 ‖2〉
‖vn‖4

+ mO
(‖vn‖−5

)+ m2O
(‖vn‖−8

)
.

Consequently, provided

m = M∗ (‖vn‖) ∼ ‖vn‖4 ∼ n2/3 � n (4.17)

we find 〈‖en+m − en‖2〉 ∼ 1. This shows that after M∗(‖vn‖) collisions, and aside from acci-
dental cancellations between the diagonal and off-diagonal terms, the particle turns through
a macroscopic angle with the unit vectors en+m covering the unit sphere. In Fig. 7 we display
values of M∗(‖v0‖) obtained from a numerical study of the decay of the correlation function
〈en · e0〉 in the 2d numerical model described in Sect. 7. The observed power law behavior
agrees with the one predicted by the random walk analysis above.
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Fig. 7 On the left, the correlation function 〈em · e0〉 is plotted as a function of m for a set of fifteen initial
speeds ‖v0‖ lying in the range 0.5 to 2.0. On the right, a numerical estimate of M∗(‖v0‖) obtained from the
initial slopes of the data in the left panel are plotted as a function of ‖v0‖

We now analyze the asymptotic behavior of ‖yn‖. For particles that start off with an
initial speed ‖v0‖, it takes typically M1 = ‖v0‖4 collisions to acquire a random direction of
motion. We can then define recursively

Mk+1 = Mk + M
2
3
k , (4.18)

from which one readily finds that Mk ∼ k3. The Mk can be interpreted by remarking that,
when n = Mk , the particle’s velocity has “turned”, i.e., changed direction by a macroscopic
amount, on average k times, while the trajectory along the sequence of m � Mk+1 − Mk

collisions between Mk and Mk+1 largely follows a more or less straight path. We use this
picture to approximately compute yMk

by writing

yMk+1 = yMk
+ η∗ (Mk+1 − Mk)eMk

. (4.19)

This is a rough estimate, but the idea is that, on average, the particles go straight for about
Mk+1 − Mk steps in the direction eMk

without turning. In view of (4.17) and (4.18) we can
now think of these successive directions eMk

as randomly and independently chosen on the
sphere, so that (4.19) describes a random walk on a larger length scale, having independent
steps of order η∗(Mk+1 − Mk) ∼ k2. This yields

〈‖yMk
‖2
〉∼

k∑

�=1

�4 ∼ k5 ∼ M
5/3
k .

Interpolating between the Mk then allows one to write

〈‖yn‖2
〉∼ n5/3. (4.20)

Note that, together with (4.15), this finally gives the result

〈‖y (τ)‖〉 ∼ τ. (4.21)
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The motion of the particles is therefore ballistic in the sense that ‖y(τ)‖/τ , which describes
the rate at which the particle’s distance from the origin grows, is finite on average. Note,
however, that the averaged instantaneous speed grows as τ 1/5, as shown above. The particles
therefore speed up, but turn while traveling, which decreases the rate at which they move
away from the origin. The results of our numerical calculations for d = 2, presented in
Fig. 2, and described in detail in Sect. 7 are in agreement with the results of the random
walk analysis outlined above.

Finally, we briefly treat the situation for d = 1. For this case, the particle cannot progres-
sively change its direction, and so the analysis presented above does not apply. Indeed, in
1d a direction change implies a complete reversal in its direction of motion; but this can
happen only if the particle encounters a stretch of scatterers that causes it to completely de-
celerate first. Computations similar to the previous ones show this cannot occur on a time
scale shorter than M∗(‖v0‖) ∼ ‖v0‖6, which is the same scale on which, as we have shown
above, the particle accelerates. On the other hand, for all times, we have the obvious upper
bound

〈‖y (τ)‖〉 ≤
∫ τ

0
ds 〈‖v (τ)‖〉 ∼ τ 6/5. (4.22)

It is clear, then, that for time scales over which most of the particles in the ensemble have
not reversed direction

〈‖yn‖〉 ∼ n, (4.23)

which along with (4.15) implies 〈‖y(τ)‖〉 ∼ τ 6/5, i.e., it saturates the upper bound (4.22).
At longer times, the distribution of times for the random walk (4.9) to return to the origin
at ξ = 0, which governs events at which the velocity reverses, may alter the asymptotics. If
this happens, it does so at times longer than we have been able to investigate numerically.
Indeed, up to the times investigated in our numerical calculations the bound (4.22) appears
to accurately describe the asymptotic properties of the growth of y(τ).

5 Non-gradient Force Fields

When the force field g does not derive from a potential W , we suppose the distribution ν of
the coupling constant c is centered

∫
c dν (c) = 0, (5.1)

so that the mean force vanishes at each point y ∈ R
d . From (3.7), we have

‖vn+1‖2 = ‖vn‖2 + 2β(0)
n + 2β(1)

n

‖vn‖ + 2β(2)
n

‖vn‖2
+ O
(‖vn‖−3

)
. (5.2)

Similar to Theorem 4.1, we now have the following Theorem, the proof of which also ap-
pears in the Appendix:

Theorem 5.1 Suppose Hypothesis 1 and (5.1) hold. Then:

(i) For all unit vectors e ∈ R
d , α(1)(e) = 0 = α(2)(e). Moreover, for all v ∈ R

d ,

�E (v) = B ′

‖v‖2
+ O
(‖v‖−3

)
, �E (v)2 = D′2 + O

(‖v‖−1
)
, (5.3)
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where B ′ = (d−1)

2 D′2, with

D′2 = c2

Cd

∫

T m

dφ

∫

R2d

dy0dy ′
0‖y0 − y ′

0‖−(1+d)

× (y0 − y ′
0

) · g (y0, φ)
(
y0 − y ′

0

) · g (y ′
0, φ
)≥ 0.

In particular, for all unit vectors e ∈ R
d and for � = 0,1,

β(�) (e) = 0, B ′ = β(2) (e) and D′2 = (β(0) (e)
)2 ≥ 0. (5.4)

D′ > 0 if and only if β(0)(e, κ) does not vanish identically, which implies g is not a
gradient vector field.

(ii) Let vn be the random process defined by (3.1) and en = vn/‖vn‖. Let, for � ∈ N, β(�)
n =

β(�)(en, κn). Then one has, for all n �= n′ ∈ N, for all 0 ≤ � ≤ �′ ≤ 1,

〈β(2)
n 〉 − B ′ = 0 = 〈β(�)

n 〉
〈β(�)

n β
(�′)
n′ 〉 = 0 = 〈β(�)

n (β
(2)

n′ − B ′)〉 = 〈(β(2)
n − B ′)(β(2)

n′ − B ′)〉.

}
(5.5)

Moreover, 〈(β(2)
n )2〉 and 〈β(�)

n β(2)
n 〉 are independent of n.

Remark 5.2 Whether the force does or does not depend on time plays no role in this result,
contrary to what happens in Theorem 4.1. In other words, when a force field is not a gradient
field, the dominant behavior of the energy transfer to a particle is not affected by whether
it depends on time or not. In particular, the coefficients B ′ and D′ do not involve time
derivatives of the force, as do B and D.

We now analyze the asymptotic behavior of the velocity and the position of the particle,
as in Sect. 4. From (5.2), neglecting the subdominant terms as in (4.7)–(4.8), we find

�ξ ′
n = ε ′

n + γ ′

ξ ′
n

, where ξ ′
n = ‖vn‖2

2D′ , ε ′
n = β(0)

n

D′ , and γ ′ = 1

4
(d − 1) .

Note that γ ′ ≥ 0 in all dimensions, so that from the analysis of (4.9) it follows that 〈‖vn‖k〉 ∼
nk/4. Using this in (2.5) yields

〈τn〉 ∼
n∑

�=0

1

�1/4
∼ n3/4, and 〈‖v(τ)‖〉 ∼ τ 1/3. (5.6)

This is proven rigorously in [6] for a time-independent, non-gradient force field of the type
(1.2) and (2.1), in d ≥ 4, under suitable additional technical conditions on g and the distrib-
ution of the scattering centers.

We now show what this implies for the asymptotic behavior of ‖y(τ)‖. First, the short
time scale N ′∗(ξ

′
0) is now N∗(ξ ′

0) ∼ ξ ′
0

2 ∼ n ∼ ‖v0‖4. Then, from (3.11) we find

en+1 = en + α(1)
n − (α(1)

n · en)en

‖vn‖2
+ O
(‖vn‖−3

)
.

Consequently, 〈‖en+m − en‖2〉 ∼ m/‖vn‖4 ∼ m/n. Thus, the particle now turns over a
macroscopic angle after M∗(‖vn‖) ∼ ‖vn‖4 ∼ n collisions, many more than for force fields
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deriving from a potential (see (4.17)) and of the same order as the number N∗(‖vn‖) ∼ n of
collisions it needs to accelerate significantly. This is simply due to the fact that the particle
is much faster, since ‖vn‖ ∼ n1/4 rather than ‖vn‖ ∼ n1/6, and harder to deflect. This reflects
itself in the asymptotic behavior of ‖y(τ)‖ as follows. We define as before M1 = ‖v0‖4,
Mk+1 = Mk + Mk , so that Mk ∼ 2k , and yMk+1 = yMk

+ η∗(Mk+1 − Mk)eMk
, which inte-

grates to 〈‖yMk
‖〉 ∼ Mk, yielding

〈‖y (τ)‖〉 ∼ τ 4/3, (5.7)

independent of the dimension d of the ambient space.

6 Homogeneous Random Fields

As we now briefly indicate, the analysis of the previous sections can be adapted to the case
where the force field is not of the form (2.2), but is a time and space homogeneous random
vector field satisfying

〈G(y, τ)〉 = 0,
〈
G(y, τ)G

(
y ′, τ ′)〉= C

(
y − y ′, τ − τ ′) .

Note that C is a matrix-valued function, which we assume decays quickly in its spatial
variable, but not necessarily in its temporal variable.

In this situation, also, we expect the asymptotic motion of the particle to be well described
by a random walk similar to the one in (2.5), where now the time step �τn is determined
by the time the particle needs to travel through a distance η∗ equal to several times the
correlation length (which equals 1 in the rescaled units used here) of the force field:

vn+1 = vn + R (yn, vn, τn,�τn)

τn+1 = τn + η∗
‖vn‖ , η∗ ≥ 1

yn+1 = yn + η∗en.

⎫
⎬

⎭ (6.1)

Here, R(yn, vn, τn,�τn) is the momentum change experienced by a particle that, after arriv-
ing at yn at time τn with momentum vn, travels for a time �τn.

We consider first the case in which G = −∇W is a random gradient field such that

〈W (y, τ)〉 = 0,
〈
W (y, τ)W

(
y ′, τ ′)〉= K

(
y − y ′, τ − τ ′) , (6.2)

where K is a function of compact support in B(0,1) belonging to C 5(Rd × R,R), that is
rotationally invariant and even in its temporal variable.

To study the asymptotic behavior of vn in (6.1) we first need, as in the previous sections,
to understand the asymptotic behavior of

‖vn‖2 = ‖v0‖2 +
n−1∑

k=0

�‖vk‖2 = ‖v0‖2 +
n−1∑

k=0

2�Hk − 2 (Wn − W0) , (6.3)

where Hk = H(yk, vk, τk) = ‖vk‖2/2 + Wk , and Wk = W(yk, τk). Introducing

�H (y, v, τ,�τ) = H (y (τ + �τ) , v (τ + �τ) , τ + �τ) − H (y, v, τ )
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we find

�H

(
y, v, τ,

η∗
‖v‖
)

= �HI

(
y, v, τ,

η∗
‖v‖
)

+ �HII

(
y, v, τ,

η∗
‖v‖
)

+ O
(‖v‖−5

)
,

where

�HI

(
y, v, τ,

η∗
‖v‖
)

= η∗
‖v‖
∫ 1

0
dλ∂τW

(
y + η∗λe, τ + η∗λ

‖v‖
)

and

�HII

(
y, v, τ,

η∗
‖v‖
)

= − η3∗
‖v‖3

∫ 1

0
dλ∇∂τW

(
y + η∗λe, τ + η∗λ

‖v‖
)

·
∫ λ

0
dλ′
∫ λ′

0
dλ′′∇W

(
y + η∗λ′′e, τ + η∗λ′′

‖v‖
)

.

We then have the same kind of result as in Theorem 4.1, the proof of which is immediate:

Proposition 6.1 Under the above conditions, 〈α(1)〉 = 0 = 〈α(2)〉 and for all v ∈ R
d ,

〈�H (v)〉 = B̃

‖v‖4 + O
(‖v‖−5

)
,
〈
(�H (v))2

〉= D̃2

‖v‖2 + O
(‖v‖−3

)
,

where

B̃ = (d − 3) η∗K(0) − 2 (d − 4)K(1), D̃2 = 2
(
η∗K(0) − K(1)

)
,

and

K(0) =
∫ 1

0
dμ
(−∂2

t K (μe,0)
)
, K(1) =

∫ 1

0
dμ
(−μ∂2

t K (μe,0)
)
.

Proof Noting that 〈�HI (v)〉 = 0, we find

〈�H (v)〉 = 〈�HII (v)〉

= η3∗
‖v‖3

∫ 1

0
dλ

∫ λ

0
dλ′′ (λ − λ′′) (�∂tK)

(
η∗
(
λ − λ′′) e, η∗(λ − λ′′)

‖v‖
)

= η4∗
‖v‖4

∫ 1

0
dλ

∫ λ

0
dλ′′ (λ − λ′′)2 (�∂2

t K
) (

η∗
(
λ − λ′′) e,0

)+ O
(‖v‖−5

)

= η4∗
‖v‖4

∫ 1

0
dλ (1 − λ)λ2

(
�∂2

t K
)
(η∗λe,0) + O

(‖v‖−5
)
.

Using the rotational invariance of �∂2
t K(·,0), and integrating by parts, we obtain the above

expression for B̃ .
Moreover, since

(�H(y, v, τ,�τ))2 = η2∗
‖v‖2

(∫ 1

0
dλ∂τW (y + η∗λe, τ )

)2

+ O(‖v‖−3),
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we find

〈(�H(v))2〉 = D̃2

‖v‖2
+ O(‖v‖−3),

where

D̃2 = η2
∗

∫ 1

0
dλ

∫ 1

0
dλ′ (−∂2

τ K
)
(η∗(λ − λ′)e,0)

= 2η2
∗

∫ 1

0
dλ(1 − λ)

(−∂2
τ K
)
(η∗λe,0).

A change of variables then gives the result. �

Scaling ‖vn‖2 by (s/n)1/3 in (6.3) and taking n to infinity, one finds that the limiting
process Zσ satisfies the stochastic differential equation

dZσ = 2

3

dBσ√
Zσ

+ 2

3

(
γ − 1

6

)
dσ

Z2
σ

, γ = 1

3

(
B̃

D̃2
+ 1

2

)
.

It then follows from the Itô formula that Yσ = Z3
σ satisfies the stochastic differential equation

of the square of the Bessel process [17] of dimension δ = 2γ + 1. By taking η∗ sufficiently
large we can make γ arbitrarily close to (d − 2)/6. The analysis of the random walk is
therefore entirely analogous to the one in Sect. 4, yielding in particular the same power laws
for the growth of 〈v2(τ )〉 and 〈y2(τ )〉 as in (4.16) and (4.21).

In the case that G is not a gradient field we still assume it to be rotationally invariant
and reflection symmetric. This implies that there exist functions �1 and �2 such that the
correlation function is of the form

C (y, τ ) = �1 (‖y‖ , τ )Py + �2 (‖y‖ , τ )P
⊥
y ,

where Py is the orthogonal projector along the direction of the vector y and P
⊥
y + Py =

Id . We in addition assume that �1 and �2 are C 2 functions that decay fast in their spatial
variable, and that for all τ ∈ R,�1(·, τ ) and �2(·, τ ) are compactly supported in [0,1].
Under these assumption, we then prove an analogue of Theorem 5.1:

Proposition 6.2 Under the conditions stated above 〈α(1)〉 = 0 = 〈α(2)〉, and for all v ∈ R
d ,

〈�E (v)〉 = B̃ ′

‖v‖2 + O
(‖v‖−3

)
,
〈
(�E (v))2

〉= D̃′2 + O
(‖v‖−1

)
,

where

B̃ ′ = η∗ (d − 1)K ′(0) − (d − 2)K ′(1), D̃′2 = 2
(
η∗K ′(0) − K ′(1)

)
> 0

and

K ′(0) =
∫ 1

0
dμ�1 (μ,0) , K ′(1) =

∫ 1

0
dμμ�1 (μ,0) .
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Proof A computation of R(y, v, τ, η∗/‖v‖) = ∫ τ+η∗/‖v‖
τ

G(y(τ ′), τ ′)dτ ′ to second order in
perturbation theory gives

R (y, v, τ, η∗/‖v‖) = RI (y, v, τ, η∗/‖v‖) + RII (y, v, τ, η∗/‖v‖)

with

RI (y, v, τ, η∗/‖v‖) = η∗
‖v‖
∫ 1

0
dλG

(
y + η∗λe, τ + η∗λ

‖v‖
)

and

RII (y, v, τ, η∗/‖v‖) = η3∗
‖v‖3

∫ 1

0
dλ

∫ λ

0
dλ′′ (λ − λ′′)

× (G (y + η∗λ′′e, τ
) · ∇)G(y + η∗λe, τ ) + O

(‖v‖−4
)
.

Hence, 〈α(1)〉 and 〈α(2)〉, and consequently 〈β(0)〉 and 〈β(1)〉, vanish. Using w · Py(v) =
(v · y)(w · y)/y2 then yields

1

2

〈
α(1) · α(1)

〉

= η2∗
2

∫ 1

0
dλ

∫ 1

0
dλ′′ (�1

(
L
∣∣λ − λ′′∣∣ ,0

)+ (d − 1)�2

(
η∗
∣∣λ − λ′′∣∣ ,0

))

= η2
∗

∫ 1

0
dλ (1 − λ) (�1 (η∗λ,0) + (d − 1)�2 (η∗λ,0)) , and

〈
α(3) · e〉

= η2
∗

∫ 1

0
dλ (1 − λ)

(
η∗λ�′

1 (λ,0) + (d − 1) (�1 (λ,0) − �2 (λ,0))
)

= η2
∗

∫ 1

0
dλ (((d − 2) − λ (d − 3))�1 (η∗λ,0) − (d − 1) (1 − λ)�2 (η∗λ,0)) .

Adding the last two equations and making the change of variables μ = η∗λ yields the above
expression for B̃ ′. �

Analysis of the random walk now proceeds along the lines of Sect. 5, yielding the same
power laws as obtained therein.

7 Numerical Results

To illustrate our theoretical analysis of the motion of a particle in random force fields pre-
sented in the previous sections, we performed numerical calculations for a periodic array
of soft scatterers in one and two dimensions. For the two dimensional case we employed
a hexagonal lattice, with, for N = (N1,N2) ∈ Z

2, xN = N1u + N2v, where u = (1,0),
v = 1

2 (1,
√

3). We focused on the case in which the force fields associated with the scat-
terers were derived from a potential, taking W to be of the form of a time-dependent, flat
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circular potential,

W (y,φ) = f (φ)χ

(‖y‖
y∗

)
, y ∈ R

d , d = 1,2,

where χ(x) = 1 if 0 ≤ x ≤ 1 and χ(x) = 0 otherwise. Here the parameter y∗ satisfies
√

3
4 <

y∗ < 1/2 to ensure the system has a finite horizon. Three different choices were explored
for the function f , namely,

f1 (φ) = cos (2πφ) , f2 (φ) = 1 + cos2 (2πφ) , φ ∈ [0,1[,

each of which leads to a time-periodic potential, and

f3 (φ) = f3 (φ1, φ2) = cos (2πφ1) + cos (2πφ2) .

In the latter case, the frequency vector ω was chosen to be ω = (1,
√

2) so that the resulting
potential is quasi-periodic in time. The phases φN were chosen uniformly on the torus,
independently for each scatterer. Coupling constants cN were either drawn independently
from a uniform distribution on [0,1/2], or set to a fixed value cN = 1, or cN = −1, for
all N .

Depending on the phase and the choice of coupling constants, each such potential de-
scribes a centrally symmetric potential barrier or well, whose maximum/minimum oscil-
lates in time. For the choice f = f1 or f3, any given scatterer will sometimes act as a
potential well, and at other times as a barrier, depending on the sign of cNf1(φN + τ) or of
cNf3(φN +ωτ) at the time τ of arrival of the particle; on average the force at a given point in
space always vanishes. When f = f2 on the other hand, and cN = 1 for all N , cNf2(φ + τ)

is always positive, yielding a lattice of oscillating potential barriers, for which the average
force at a given point in space does not vanish. Similarly, when f = f2 and cN = −1 for all
N one obtains a lattice of oscillating potential wells. In all cases that we studied numerically,
the system had finite horizon.

Motion of a particle through an array of such scatterers can be computed iteratively,
by using energy and angular momentum conservation at the entry and exit of the particle
from the support of the potential, and without a numerical integration of a second order
differential equation. This allows one to compute the motion of the particle numerically for
very long times, as required to properly study the asymptotic regime.

In our calculations, each particle was initially placed at a point randomly chosen on the
boundary of the scatterer at the origin, with an initial velocity drawn with equal probability
from all possible outward directions. For each ensemble of initial conditions, the initial
speed ‖v0‖ of the particle was kept fixed (with values indicated in the figure captions, or in
the figures themselves). Displayed results represent averages over, typically, 104 trajectories
for each initial speed. For convenience of presentation, data appearing as a function of time
τ or collision number n in the figures presented throughout the paper represent a subset of
the data generated, evaluated at values of the independent variable that are equally spaced
on a logarithmic axis.

A general finding of both our numerical calculations and of our theoretical analysis is that
the power law behavior associated with stochastic acceleration is independent of the precise
form of the potential employed; in particular it does not depend on whether the average
force vanishes or not. Thus, in the figures that appear in the paper we have chosen to present
numerical results only for the case where f = f1 and cN is uniformly distributed in [0,1/2].
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For this specific model, Fig. 1 shows the evolution of the particle’s mean kinetic energy,
both as a function of time τ and as a function of collision number n. As noted in the text,
one observes excellent agreement with the power law behavior predicted by our analysis
(see (1.4), (4.11), (4.16)), independent of dimension. One also notices in this figure that the
asymptotic regime is reached after an initial period which ends after a number N∗(‖v0‖)
of collisions that grows with ‖v0‖. The value of N∗(‖v0‖) was computed numerically for
fifteen values of ‖v0‖ between 0.5 and 2, and the result is presented in Fig. 4. The observed
power law N∗(‖v0‖) ∼ ‖v0‖6, is as predicted in Sect. 4 (see (4.10)).

Similarly, Fig. 2 shows for the specific numerical model described above, the evolution
of the particle’s mean squared displacement as a function of τ and n. We find that the power
laws obtained in one dimension (see (1.5) and (4.23)) and in two dimensions (see (1.6) and
(4.20)–(4.21)) are indeed different, and precisely as predicted by the analysis of Sect. 4.

In order to obtain analytical results for a sufficiently general class of potentials, the theo-
retical analysis of Sect. 4 assumed scattering potentials that are smooth, which the potentials
used in the numerical calculations are clearly not. Indeed, running the numerics for suffi-
ciently long times with a smooth potential would involve repeatedly solving a second order
differential equation; this would lack precision and be too time consuming. Explicit compu-
tations specific to the square potential, however, show that formulas (3.7) and (3.3) remain
valid, and that their dominant terms have the same behavior as in the analysis presented, so
that our arguments go through unaltered. This lends additional support to our claim that it is
the high energy behavior of the energy and momentum transfer in a single scattering event
that determines the asymptotic behavior of the particle, and suggests that the results are even
more universal than is implied by our analysis.

As a closing comment we note also that in our numerical models the potentials are rota-
tionally invariant, and the lattices are ordered. Thus, when cN is constant, the only random-
ness left in the problem is in the initial phases φN of the scatterers and the initial directions
e0 of the particles. Thus, the essential randomness necessary for the validity of our analy-
sis arises from the dispersive nature of the scattering event itself, which leads to a random
sequence of scattering events when evaluated along the trajectory that the particle follows.

Appendix: Proof of Main Theorems

In this appendix we provide proofs of Theorems 4.1 and 5.1. We begin with some prepara-
tory material. It is convenient to write ĝ(y, τ ) = Mg(M−1y,ωτ + φ), suppressing the vari-
ables φ and M from the notation.

The estimates below are all uniform in φ and M . Note that when g = −∇W , then ĝ =
−∇Ŵ , with Ŵ (y, τ ) = W(M−1y,ωτ + φ). We need to study the solutions of

ÿ
(
τ ′)= cĝ

(
y
(
τ ′) , τ ′)= −c∇Ŵ

(
y
(
τ ′) , τ ′) , y (τ0) = y0, ẏ (τ0) = v0. (A.1)

For any initial condition y(τ0) = y0, v(τ0) = v0, we define

v± = lim
τ→±∞ ẏ (τ ) . (A.2)

In particular, when y0 = b − 1
2

v0
‖v0‖ and ẏ0 = v0, we have (see (2.4))

R(v0, κ) = v+ − v− = −c

∫

R

dτ ′∇Ŵ (y(τ ′), τ ′). (A.3)

That these limits exist if ‖v0‖ is large enough is a consequence of the following lemma.
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Lemma A.1 Suppose Hypothesis 1 holds. Let τ0 ∈ R and suppose (y0, v0) ∈ R
2d satisfies

‖y0‖ ≤ 1/2, ‖v0‖2 ≥ 12cgmax. Then there exist unique τin ≤ τ0 ≤ τout so that ‖y(τin)‖ = 5
2 =

‖y(τout)‖. Moreover

√
3

‖v0‖ ≤ min{τ0 − τin, τout − τ0} ≤ max{τ0 − τin, τout − τ0} ≤ 3
√

2

‖v0‖ . (A.4)

The lemma roughly says that any particle that is at some instant τ0 inside the region
where the potential does not vanish and that has enough kinetic energy at that moment, has
entered it in the past and will leave again in the future, spending a time of order 1

‖v0‖ to cross

it: both the upper and lower bounds in (A.4) will be used in the proof of Proposition A.3
below. Note that the Lemma does indeed imply the existence of the limits in (A.2).

Proof From (A.1),

y (τ) = y0 + v0 (τ − τ0) + c

∫ τ

τ0

dτ ′
∫ τ ′

τ0

dτ ′′ĝ
(
y
(
τ ′′) , τ ′′) , (A.5)

so that Q(τ − τ0) ≤ ‖y(τ)‖ ≤ P (τ − τ0), where

Q(τ − τ0) = −cgmax
(τ − τ0)

2

2
+ ‖v0‖|τ − τ0| − 1

2

and

P (τ − τ0) = cgmax
(τ − τ0)

2

2
+ ‖v0‖|τ − τ0| + 1

2
.

One checks that Q(σ+) = 5
2 = P (σ−), with

σ− = ‖v0‖
cgmax

(√

1 + 4cgmax

‖v0‖2 − 1

)
, and σ+ = ‖v0‖

cgmax

(
1 −
√

1 − 6cgmax

‖v0‖2

)
.

Note that σ− ≤ σ+. Since ‖y(τ0 ± σ−)‖ ≤ 5
2 ≤ ‖y(τ0 ± σ+)‖, it is clear there exist τin, τout

satisfying

τ0 − σ+ ≤ τin ≤ τ0 − σ− and τ0 + σ− ≤ τout ≤ τ0 + σ+.

Uniqueness follows from the observation that ĝ vanishes outside the ball of radius 1/2 so
that the trajectory can enter and leave the ball of radius 5/2 only once. Equation (A.4) now
follows from the observation that, if 0 ≤ x ≤ A < 1, then

√
1 + x − 1 ≥ 1

2

1√
1 + A

x, 1 − √
1 − x ≤ 1

2

1√
1 − A

x.

It is enough to choose A = 1/3 in the first inequality and A = 1/2 in the second. �

With v± from (A.2), we define, for all (y0, v0, τ0) so that ‖v0‖2 ≥ 12cgmax,

�v (v0, y0, τ0) = v+ − v−, �K (v0, y0, τ0) = 1

2

(
v2

+ − v2
−
)
. (A.6)
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Note that both �v and �K are constant along trajectories:

�v (v0, y0, τ0) = �v(v(τ ′), y(τ ′), τ ′), �K(v0, y0, τ0) = �K(v(τ ′), y(τ ′), τ ′). (A.7)

We therefore think of them as functions on the space of all trajectories with sufficient kinetic
energy. We are interested in understanding the high velocity behavior of �K and of its
average over all those trajectories that enter the support of the potential. We will see that,
when ĝ = −∇Ŵ , �K ∼ ‖v0‖−1 (Proposition A.3) but that the average of �K vanishes
up to terms of order ‖v0‖−4 (Proposition A.4). In other words, the dominant terms in �K

vanish on average. This observation is the essence of Theorem 4.1, as we will explain below.

Proposition A.2 Suppose Hypothesis 1 is satisfied. Let y0, v0 ∈ R
d and τ0 ∈ R, with

‖v0‖2 ≥ 12cgmax. Then

�v (v0, y0, τ0) = c

‖v0‖
∫ +∞

−∞
ĝ (y0 + λe0, τ0) dλ

+ c

‖v0‖2

∫ +∞

−∞
∂τ ĝ (y0 + λe0, τ0) λdλ + O

(‖v0‖−3
)
. (A.8)

The error term is uniform in y0, τ0, c ∈ [−1,1] and in e0 = v0/‖v0‖.

Proof Suppose first ‖y0‖ ≤ 1
2 . It follows from Lemma A.1 that, under the stated condition

on ‖v0‖, there exist unique entrance and exit times τin and τout to the ball of radius 5/2,
with τout − τ0 and τ0 − τin of order ‖v0‖−1. As a result, for τ < τin and τ > τout the particle
executes a free motion with speeds v− and v+, in the region where the force ĝ vanishes
identically. From (A.1), one now readily concludes

�v (v0, y0, τ0) = c

∫ τout

τin

ĝ (y (τ ) , τ )dτ

= c

∫ τout

τin

ĝ (y0 + v0 (τ − τ0) , τ )dτ + O
(‖v0‖−3

)
,

where we used ‖y(τ) − (y0 + v0(τ − τ0))‖ ≤ c
2 gmax(τ − τ0)

2, which follows easily from
(A.5). Let us now remark that Lemma A.1 implies that

‖y0 + v0(τout/in − τ0)‖ ≥ ‖v0‖|τout/in − τ0| − 1

2
≥ 1/2.

As a result, we can extend the τ integration to the full real axis; indeed, the integrand van-
ishes for τ ≤ τin and for τout ≤ τ . The change of variables λ = ‖v0‖(τ − τ0) yields

�v (v0, y0, τ0) = c

‖v0‖
∫ +∞

−∞
ĝ

(
y0 + λe0, τ0 + λ

‖v0‖
)

dλ + O
(‖v0‖−3

)
, (A.9)

so that a first order Taylor expansion yields the result.
We now consider the case where ‖y0‖ > 1/2. We may assume the particle trajectory

intersects the ball of radius 1/2 centered at the origin: otherwise �v(v0, y0, τ0) = 0, and
then the result stated certainly holds. Suppose therefore the trajectory intersects that ball
and that y0 · v0 ≤ 0. Then there exists a unique time τ∗ > τ0 when the trajectory enters the
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above ball: so y(τ) = y0 + v0(τ − τ0) for all τ ≤ τ∗, ‖y(τ∗)‖ = 1/2 and y(τ∗) · v0 ≤ 0.
Clearly

�v (v0, y0, τ0) = �v (v0, y (τ∗) , τ∗) ,

and we can apply the result of the first part of the proof to write

�v (v0, y0, τ0) = c

‖v0‖
∫ +∞

−∞
ĝ

(
y (τ∗) + λe0, τ∗ + λ

‖v0‖
)

dλ + O
(‖v0‖−3

)
. (A.10)

The change of variables

λ̃ = λ + ‖v0‖ (τ∗ − τ0)

transforms (A.10) into (A.9), which concludes the proof. The case where y0 ·v0 ≥ 0 is treated
analogously. �

When ĝ = −∇Ŵ , we need the high ‖v0‖ expansion of �K up to order ‖v0‖−4 obtained
in the following proposition.

Proposition A.3 Suppose Hypothesis 1 is satisfied and suppose ĝ = −∇Ŵ . Then, for all
v0 ∈ R

d such that ‖v0‖2 ≥ 12cgmax and for all y0 ∈ R
d ,

�K (v0, y0, τ0) = �KI (v0, y0, τ0) + �KII (v0, y0, τ0) + O
(‖v0‖−5

)
(A.11)

where

�KI (v0, y0, τ0) = c

‖v0‖
∫

R

dλ ∂τ Ŵ

(
y0 + λe0, τ0 + λ

‖v0‖
)

, (A.12)

and

�KII (v0, y0, τ0) = − c2

‖v0‖3

∫

R

dλ∇∂τ Ŵ

(
y0 + λe0, τ0 + λ

‖v0‖
)

·
∫ λ

0
dλ′
∫ λ′

0
dλ′′∇Ŵ

(
y0 + λ′′e0, τ0 + λ′′

‖v0‖
)

. (A.13)

The error term is uniform in y0, τ0, and in e0 = v0/‖v0‖.

The index “I” or “II” refers to first and second order in Ŵ , but note that each of the
corresponding contributions has an expansion in ‖v0‖−1.

Proof We first deal with the case where ‖y0‖ ≤ 1/2. As in the proof of Proposition A.2, one
can integrate the equation of motion to obtain

�K (v0, y0, τ0) = −c

∫ τout

τin

ẏ (τ ) · ∇Ŵ (y (τ ) , τ )dτ = c

∫ τout

τin

∂τ Ŵ (y (τ ) , τ )dτ.

From (A.5) one easily finds, for τ ∈ [τin, τout], that

‖ẏ (τ ) − v0‖ ≤ cgmax|τ − τ0|
‖y (τ) − (y0 + v0 (τ − τ0))‖ ≤ cgmax (τ − τ0)

2

y (τ) = yI (τ ) + O
(‖v0‖−4

)

⎫
⎬

⎭ (A.14)
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where we used (A.4) in the last line and where

yI (τ ) = y0 + v0 (τ − τ0) − c

∫ τ

τ0

dτ ′
∫ τ ′

τ0

dτ ′′ ∇Ŵ
(
y0 + v0

(
τ ′′ − τ0

)
, τ ′′) .

Hence

�K (v0, y0, τ0) = c

∫ τout

τin

∂τ Ŵ (yI (τ ) , τ )dτ + O
(‖v0‖−5

)
.

Expanding ∂τ Ŵ (yI (τ ), τ ) around y0 + v0(τ − τ0), the result follows. The case ‖y0‖ > 1/2
is handled as in the proof of Proposition A.2. �

For the purpose of proving Theorem 4.1, we now turn to the computation of the average
energy change of all trajectories with a given, sufficiently high, incoming momentum or
energy, and that enter the ball of radius 1/2 centered at the origin. Recalling that ĝ(y, τ ) =
Mg(M−1y,ωτ + φ), we have, for v0 ∈ R

d , b · v0 = 0 and κ = (b,M,φ + ωτ0, c),

�E (v0, κ) = �K

(
v0, b − 1

2
e0, τ0

)
. (A.15)

We first compute the average of �E(v0, b,M,φ, c) over φ:

∫

Tm

dφ �E (v0, b,M,φ, c) . (A.16)

Proposition A.4 Suppose Hypothesis 1 is satisfied. Then, for all v0 ∈ R
d and for all b ∈ R

d ,
b · v0 = 0,M ∈ SO(d,R), c ∈ [−1,1],

∫

Tm

dφ (�E (v0, b,M,φ, c) + �E (−v0, b,M,φ, c))

= 2β̂
(4)
II (e0, b,M,c)

‖v0‖4
+ O
(‖v0‖−5

)
. (A.17)

Here

β̂
(4)
II (e0, b,M,c) = c2

2

∫

Tm

dφ

∫ 1

0
dλ

∫ 1

0
dλ′ (λ − λ′)2

× ∂τS

(
λ − 1

2
,M,φ

)
∂τS

(
λ′ − 1

2
,M,φ

)
, (A.18)

with S(μ,M,φ) = ∇W(M−1(b + μe0),φ).

We remark that �E(v0, b,M,φ, c) and �E(−v0, b,M,φ, c) are the energy changes un-
dergone by two distinct particles, both impinging at the same time on the same obstacle with
the same impact parameter, but with opposite velocities. According to Proposition A.3, each
of the two terms �E(±v0, b,M,φ, c) is of order ‖v0‖−1 so that Proposition A.4 shows that
combining a time average with a “time reversal” v0 → −v0 diminishes the energy change
undergone by the particle in a scattering event drastically.
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Proof Using (A.15), we write, as in (A.12)–(A.13)

�E = �EI + �EII + O
(‖v0‖−5

)
. (A.19)

We will accordingly write β(�) = β
(�)
I + β

(�)
II , where β(�) is defined in (3.7). It is then imme-

diately clear from (A.12) that
∫

Tm

dφ �EI (v0, b,M,φ, c)

= c

‖v0‖
∫

dλ

∫
dφ∂τW

(
M−1

(
b +
(

λ − 1

2

)
e0

)
,ωτ0 + ωλ

‖v0‖ + φ

)
= 0,

since ∂τ = ω · ∇φ and W is φ-periodic.
We now turn to �EII which is of order ‖v0‖−3 in view of (A.13) and write

�EII = β
(3)
II

‖v0‖3
+ β

(4)
II

‖v0‖4
+ O
(‖v0‖−5

)
. (A.20)

One then readily finds

β
(3)
II (e0, b,M,φ, c) = −c2

∫ 1

0
dλ

∫ λ

0
dλ′
∫ λ′

0
dλ′′

× ∂τS

(
λ − 1

2
,M,φ

)
· S
(

λ′′ − 1

2
,M,φ

)
. (A.21)

and, immediately performing the φ-average,

∫

Tm

dφ β
(4)
II (e, b,M,φ, c) = c2

2

∫

Tm

dφ

∫ 1

0
dλ

∫ 1

0
dλ′ (λ − λ′)2

× ∂τS

(
λ − 1

2
,M,φ

)
· ∂τS

(
λ′ − 1

2
,M,φ

)
.

Note that in (A.21), the integrand is in general no longer a gradient in the φ-variables, except
in the special case where W(y,φ) = w(y)f (φ). So there is no reason why the φ-average
of β

(3)
II (e0, b,M,φ, c) should vanish. But now remark, using (A.21) and the definition of S,

that

β
(3)
II (−e0, b,M,φ, c) = −c2

∫ 1

0
dμ ∂τS

(
1

2
− μ,M,φ

)

·
∫ μ

0
dμ′
∫ μ′

0
dμ′′S
(

1

2
− μ′′,M,φ

)
.

When performing in this last expression the succession of changes of variable defined by
1
2 − μ′′ = λ − 1

2 , μ′ = 1 − λ′, −μ + 1 = λ′′, one finds

β
(3)
II (−e0, b,M,φ, c)

= −c2
∫ 1

0
dλ′′
∫ 1

λ′′
dλ′
∫ 1

λ′
dλ∂τS

(
λ′′ − 1

2
,M,φ

)
· S
(

λ − 1

2
,M,φ

)
. (A.22)
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Note that the domain of integration is the same as in (A.21), just the order of integration is
different. So adding (A.21) and (A.22) the integrand becomes

S

(
λ − 1

2
,M,φ

)
· ∂τS

(
λ′′ − 1

2
,M,φ

)
+ ∂τS

(
λ − 1

2
,M,φ

)
· S
(

λ′′ − 1

2
,M,φ

)

which is a total time derivative. Computing the φ-average of the sum therefore yields

∫

Tm

dφ
(
β

(3)
II (e0, b,M,φ, c) + β

(3)
II (−e0, b,M,φ, c)

)
= 0. (A.23)

A similar computation shows that

∫

Tm

dφ β
(4)
II (−e0, b,M,φ, c) =

∫

Tm

dφ β
(4)
II (e0, b,M,φ, c) . (A.24)

Adding the various contributions, the proposition now follows from (A.19). �

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1 (i) Noting that ∇Ŵ (y, τ ) = M∇W(M−1y,ωτ + φ) one finds

∫ +∞

−∞
dλ

∫

e·b=0
db ∇Ŵ

(
b +
(

λ − 1

2

)
e, τ

)
= 0

since Ŵ has compact support in its first variable. So α(1) = 0. Similarly, integration over the
φ variable leads to the vanishing of α(2)(e). To prove (4.2), we first point out that, in view of
the rotational invariance of the system, �E(M ′v0,M

′b,M ′M,φ, c) = �E(v0, b,M,φ, c),

for all M ′ ∈ SO(d,R). Consequently, �E(M ′v0) = �E(v0), where · is defined in (3.12).
As a result, �E(v0) depends only on ‖v0‖ and not on e0. In particular �E(−v0) = �E(v0).
It therefore follows from (A.17) that

�E (v0) = β
(4)
II

‖v0‖4
+ O
(‖v0‖−5

)
.

This proves the first equation in (4.2). Using

�E(v, κ) = β(1)(e, κ)

‖v‖ + O(‖v0‖−2),

the second equation in (4.2) and (4.5) follow immediately.
It remains to show (4.3) and (4.4). For that purpose, we compute B:

B = β
(4)
II

= c2

2

∫

Tm

dφ

∫

Sd

d�(e0)

∫

b·e0=0

db

Cd

∫ 1

0
dλ

∫ 1

0
dλ′(λ − λ′)2

× S̃

(
b +
(

λ − 1

2

)
e0, φ

)
· S̃
(

b +
(

λ′ − 1

2

)
e0, φ

)
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where S̃(y,φ) = ∇∂τW(y,φ). Using the change of variables formula (A.25), proven below,
we find

B = c2

2Cd

∫

Tm

dφ

∫

Rd

dy

∫

Rd

dy ′ ∥∥y − y ′∥∥3−d
S̃(y,φ) · S̃(y ′, φ).

Using the definition of S̃ and integrating by parts twice, this yields

B = c2

2Cd

∫

Tm

dφ

∫

Rd

dy

∫

Rd

dy ′
d∑

i=1

∂yi
∂y′

i
‖y − y ′‖3−d∂τW(y,φ)∂τW(y ′, φ).

Since

∂yi
∂y′

i
‖y − y ′‖3−d = (d − 3)

(
(1 − d)(yi − y ′

i )
2 + ‖y − y ′‖2

)‖y − y ′‖−1−d ,

we conclude

B = (d − 3)
c2

2Cd

∫

Tm

dφ

∫

Rd

dy

∫

Rd

dy ′‖y − y ′‖1−d∂τW(y,φ)∂τW(y ′, φ).

Using (3.10) and (4.5), one finds

D2 = c2

∫

Tm

dφ

∫

Sd

d�(e0)

∫

b·e0=0

db

Cd

∫

R

dλ

∫

R

dλ′ ∂τW

(
M−1

(
b +
(

λ − 1

2

)
e0

)
, φ

)

× ∂τW

(
M−1

(
b +
(

λ′ − 1

2

)
e0

)
, φ

)
.

In view of (A.25) this becomes

D2 = c2

Cd

∫

Tm

dφ

∫

Rd

dy

∫

Rd

dy ′‖y − y ′‖1−d∂τW(y,φ)∂τW(y ′, φ),

which proves (4.3) and (4.4).
(ii) Note that when vn is defined by (3.1), κn is independent of vn since the latter only

depends on κk for k < n. It follows therefore from (4.5) that 〈β(�)
n 〉 = 0 = 〈β(4)

n 〉 − B. The
same remark applies to the computation of the correlations. For example, when computing
〈β(�)

n β
(�′)
n+k〉, for some positive k, one can integrate first over κn+k , which yields the result

because of (i). �

Lemma A.5 In dimension d ≥ 2, for all f : R
d × R

d × R
+ → R, such that ‖y0 −

y ′
0‖1−df (y0, y

′
0,‖y0 − y ′

0‖) ∈ L1(R2d), we have
∫

Sd

d�(e0)

∫

b·e0=0
db

∫

R

dλ

∫

R

dλ′f
(
b + λe0, b + λ′e0,

∣∣λ − λ′∣∣)

=
∫

Rd

dy0

∫

Rd

dy ′
0

∥∥y0 − y ′
0

∥∥1−d
f
(
y0, y

′
0,
∥∥y0 − y ′

0

∥∥) . (A.25)

Proof Let y0 and y ′
0 be in R

d , y0 �= y ′
0. Then there exists a unique (λ,λ′, e0, b) ∈ R × R ×

S
d × R

d with (y0 − y ′
0) · e0 > 0 such that

y0 = b + λe0, y ′
0 = b + λ′e0 and b · e0 = 0.
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Since e0 ∈ S
d , there exists unique angles (θ1, . . . , θd−1) ∈ [0,π]d−2 × [0,2π] such that

e0 = Ru1, R = Rd−1 (θd−1) · · ·R1 (θ1) ,

where (u1, . . . , ud) is the canonical basis of R
d and Ri(θ) is the rotation of angle θ in the

plane defined by ui and ui+1. Since R−1b is orthogonal to u1, there exists also a unique
(ρ, θ̃2, . . . , θ̃d−1) ∈ R

+ × [0,π ]d−3 × [0,2π ] such that

b = ρRR̃u2, R̃ = Rd−1

(
θ̃d−1

)
· · ·R2

(
θ̃2

)
.

This gives the following equality:

dy0dy ′
0 = |J |dλdλ′dρ

d−1∏

i=1

dθi

d−1∏

j=2

dθ̃j ,

where

|J | =
∣∣∣∣
Ru1 0d×1 RR̃u2 N M

0d×1 Ru1 RR̃u2 N M ′

∣∣∣∣ ,

with N = ρR∇θ̃ (R̃u2),

M = ∇θ

(
R
(
ρR̃u2 + λu1

))
and M ′ = ∇θ

(
R
(
ρR̃u2 + λ′u1

))
.

Simple manipulations on the rows and columns yield

|J | =
∣∣∣∣

Ru1 RR̃u2 N 0d×1 M

0d×d Ru1 M ′ − M

∣∣∣∣=
∣∣λ′ − λ

∣∣d−1
ρd−2J1J2,

with J1 = |Ru1;∇θRu1|, J2 = |u1; R̃u2;∇θ̃ R̃u2|, the result follows upon noticing that

d�(e0) = J1

d−1∏

i=1

dθi and db = ρd−2J2dρ

d−1∏

j=2

dθ̃j .
�

Proof of Theorem 5.1 Computing R(v, κ) to second order in perturbation theory as in the
proof of Proposition A.3, one finds

R (v, κ) = RI (v, κ) + RII (v, κ) + O
(‖v‖−4

)
, (A.26)

where

RI (v, κ) = c

‖v‖
∫

R

dμ ĝ

(
b + μe, τ0 + μ + 1

2

‖v‖

)
and

RII (v, κ) = c2

‖v‖3

∫

R

dμ [K (e, κ,μ) · ∇] ĝ (b + μe, τ0) ,

with

K (e, κ,μ) =
∫ μ

−∞
dμ′
∫ μ′

−∞
dμ′′ĝ
(
b + μ′′e, τ0

)
.
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As a result of (5.1), RI (v, κ) = 0, immediately implying α(�) = 0 for � = 1,2 and hence
β(�) = 0 for � = 0,1 (see (3.8)). To compute β(2), we need e · α(3). From (A.26) we find
e · α(3)(e, κ) = T (e, κ) with

T (e, κ) = c2
∫

R

dμ

∫ μ

−∞
dμ′
∫ μ′

−∞
dμ′′ [ĝ

(
b + μ′′e, τ0

) · ∇] (e · ĝ) (b + μe, τ0)

= c2
∫

R

dμ

∫ μ

−∞
dμ′′ (μ − μ′′) [ĝ

(
b + μ′′e, τ0

) · ∇] (e · ĝ) (b + μe, τ0) .

Noting that the integrand is unchanged under the change of variable ẽ = −e, μ̃ = −μ, μ̃′′ =
−μ′′, one finds
∫

d�(e)

∫

b·e=0
db T (e, κ) = c2

∫
d�(ẽ)

∫

b·ẽ=0
db

∫

R

dμ̃

∫ +∞

μ̃

dμ̃′′ (μ̃ − μ̃′′)

× [ĝ (b + μ̃′′ẽ, τ0

) · ∇] (ẽ · ĝ) (b + μ̃ẽ, τ0) .

Averaging the last two formulas and using the change of variables formula (A.25), we con-
clude

e · α(3) = c2

2

∫

Tm

dφ

∫

Sd

d�(e0)

∫

b·e0=0

db

Cd

∫

R

dμ

∫

R

dμ

× (g(b + μ′′e,φ) · ∇) (((b + μe) − (b + μ′′e)) · g) (b + μe,φ)

= c2

2Cd

∫

Tm

dφ

∫
dydy ′′‖y − y ′′‖1−d

∑

j

(y − y ′′)j

[
g(y ′′, φ) · ∇]gj (y,φ).

A partial integration then yields

e · α(3) = −c2 (1 − d)

2Cd

∫

Tm

dφ

∫
dydy ′′‖y − y ′′‖−1−d

× ((y − y ′′) · g (y,φ)
) ((

y − y ′′) · g (y ′′, φ
))

− c2

2Cd

∫

Tm

dφ

∫
dydy ′′‖y − y ′′‖1−dg (y,φ) · g (y ′′, φ

)
.

From (3.4) one easily sees the second term equals − 1
2α(1) · α(1)(e) so that, using (3.8), we

find

β(2) (e) = c2 (d − 1)

2Cd

∫

Tm

dφ

∫
dydy ′′‖y − y ′′‖−1−d

× ((y − y ′′) · g (y,φ)
) ((

y − y ′′) · g (y ′′, φ
))

= d − 1

2
β(0) (e)2 ≥ 0. �
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